Fourth-order partial differential equations for noise removal

نویسندگان

  • Yu-Li You
  • Mostafa Kaveh
چکیده

A class of fourth-order partial differential equations (PDEs) are proposed to optimize the trade-off between noise removal and edge preservation. The time evolution of these PDEs seeks to minimize a cost functional which is an increasing function of the absolute value of the Laplacian of the image intensity function. Since the Laplacian of an image at a pixel is zero if the image is planar in its neighborhood, these PDEs attempt to remove noise and preserve edges by approximating an observed image with a piecewise planar image. Piecewise planar images look more natural than step images which anisotropic diffusion (second order PDEs) uses to approximate an observed image. So the proposed PDEs are able to avoid the blocky effects widely seen in images processed by anisotropic diffusion, while achieving the degree of noise removal and edge preservation comparable to anisotropic diffusion. Although both approaches seem to be comparable in removing speckles in the observed images, speckles are more visible in images processed by the proposed PDEs, because piecewise planar images are less likely to mask speckles than step images and anisotropic diffusion tends to generate multiple false edges. Speckles can be easily removed by simple algorithms such as the one presented in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions of Fourth-order Partial Differential Equations in a Noise Removal Model

In this paper, we discuss the existence and uniqueness of weak solutions for a fourth-order partial differential equation stemmed from image processing for noise removal. We also present some numerical tests for high order filters.

متن کامل

Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method

In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...

متن کامل

Image Zooming using Non-linear Partial Differential Equation

The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...

متن کامل

Well-Posedness for a Class of Fourth Order Diffusions for Image Processing

A number of image denoising models based on higher order parabolic partial differential equations (PDEs) have been proposed in an effort to overcome some of the problems attendant to second order methods such as the famous Perona-Malik model. However, there is little analysis of these equations to be found in the literature. In this paper, methods of maximal regularity are used to prove the exi...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Fourth-order Partial Differential Equations for Effective Image Denoising

This article concerns mathematical image denoising methods incorporating fourth-order partial differential equations (PDEs). We introduce and analyze piecewise planarity conditions (PPCs) with which unconstrained fourth-order variational models in continuum converge to a piecewise planar image. It has been observed that fourth-order variational models holding PPCs can restore better images than...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 9 10  شماره 

صفحات  -

تاریخ انتشار 2000